Decoding Spatial Complexity in Strongly Correlated Electronic Systems
نویسندگان
چکیده
منابع مشابه
Complexity in strongly correlated electronic systems.
A wide variety of experimental results and theoretical investigations in recent years have convincingly demonstrated that several transition metal oxides and other materials have dominant states that are not spatially homogeneous. This occurs in cases in which several physical interactions-spin, charge, lattice, and/or orbital-are simultaneously active. This phenomenon causes interesting effect...
متن کاملSuperconductivity in Strongly Correlated Electronic Systems
A microscopic theory of superconducting pairing within the Hubbard model is discussed. A Dyson equation for the matrix thermodynamic Green function in the Nambu representation for Hubbard operators is derived by applying the Mori-type projection technique for the equation of motion method. The self-energy is calculated in the noncrossing approximation for electron scattering on spin and charge ...
متن کاملSymmetries in the Physics of Strongly Correlated Electronic Systems ∗
Strongly correlated electron systems require the development of new theoretical schemes in order to describe their unusual and unexpected properties. The usual perturbation schemes are inadequate and new concepts must be introduced. In our scheme of calculations, the Composite Operator Method, is possible to recover , through a self-consistent calculation, a series of fundamental symmetries by ...
متن کاملHigh Temperature Superconductivity in Strongly Correlated Electronic Systems
In this paper we give a selective review of our work on the role of electron correlation in the theory of high temperature superconductivity. The question of how electronic repulsions might give rise to off-diagonal long range order (ODLRO) in high temperature superconductors is currently one of the key questions in the theory of condensed matter. This paper argues that the key to understanding...
متن کاملElectronic duality in strongly correlated matter.
Superconductivity develops from an attractive interaction between itinerant electrons that creates electron pairs, which condense into a macroscopic quantum state-the superconducting state. On the other hand, magnetic order in a metal arises from electrons localized close to the ionic core and whose interaction is mediated by itinerant electrons. The dichotomy between local moment magnetic orde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Superconductivity and Novel Magnetism
سال: 2015
ISSN: 1557-1939,1557-1947
DOI: 10.1007/s10948-014-2898-0